运行环境: Ubuntu 18.04
安装完系统,先更换镜像源(ustc),然后apt-get update
安装显卡驱动+cuda
新版本的nvidia-driver安装同时自动可以安装对应最新版本的cuda
1
2
$ sudo add-apt-repository ppa:graphics-drivers/ppa
$ sudo apt update
查看当前系统推荐你安装的驱动版本
1
$ ubuntu-drivers devices
安装最新版本
1
$ ubuntu-drivers devices
重启,查看是否安装成功,发现cuda10.1也被同时自动安装
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
$ nvidia-smi
Tue May 7 21:05:41 2019
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 430.09 Driver Version: 430.09 CUDA Version: 10.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce RTX 2070 Off | 00000000:01:00.0 Off | N/A |
| 0% 39C P8 24W / 185W | 218MiB / 7982MiB | 4% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 1280 G /usr/lib/xorg/Xorg 136MiB |
| 0 1449 G /usr/bin/gnome-shell 80MiB |
+-----------------------------------------------------------------------------+
安装cuDNN
官网https://developer.nvidia.com/rdp/cudnn-download 下载,需要注册下账号,选对应cuda的版本的cuDNN,
下载对应的deb包:cuDNN Runtime Library for Ubuntu18.04 (Deb)
得到:libcudnn7_7.5.1.10-1+cuda10.1_amd64.deb
安装即可:
1
$ sudo dpkg -i libcudnn7_7.5.1.10-1+cuda10.1_amd64.deb
安装相关库
1
2
$ sudo apt-get install python3-pip python3-tk
$ sudo pip3 install numpy scipy matplotlib pillow
安装pytorch:最好从官网安装 https://pytorch.org/get-started/locally/
选择对应版本的安装命令:
例如torch1.0.1版本,cuda10.X, python3.6, linux系统(目前最新1.1.0版本):
1
2
$ sudo pip3 install https://download.pytorch.org/whl/cu100/torch-1.0.1-cp36-cp36m-linux_x86_64.whl
$ sudo pip3 install torchvision